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I. MARITIME ANOMALY DETECTION 

A. Detecting Stealth Deviations from Standard Routes Using the Ornstein-Uhlenbeck 
Process 

The Automatic Identification System (AIS) makes covert rendezvous at sea, such as smuggling and piracy, 
impossible. But, in practice, AIS can be spoofed or simply disabled. Here we report on [4], in which a novel 
anomaly detection procedure based on the Ornstein-Uhlenbeck (OU) mean-reverting stochastic process is 
presented. The considered anomaly is a vessel that deviates from a planned route as in figure 1, changing its 
nominal velocity v0. In order to hide this behavior, the vessel switches off its Automatic Identification 
System (AIS) device for a time T, and then tries to revert to the previous nominal velocity v0. The decision 
that has to be taken is either declaring that a deviation happened or not, relying only upon two consecutive 
AIS contacts. Furthermore, the extension to the scenario in which multiple contacts (e.g. radar) are available 
during the time period T is also considered. A proper statistical hypothesis testing procedure that builds on 
the changes in the OU process long-term velocity parameter v0 of the vessel is the core of the proposed 
approach and enables for the solution of the anomaly detection problem. Closed analytical forms are 
provided for the detection and false alarm probabilities of the hypothesis test. 

 

Fig. 1. The track of cargo vessel reveals a (possibly illegal) rendezvous with four fishing vessels 
in the Pacific Ocean. Left: world view. Right: close-up of diversion. 

The OU model has a much tighter variance on predicted vessels’ locations when they are out of view, hence 
is more suitable than (say) a nearly-constant velocity model that is more common for many tracking 
applications. When there are gaps in the data during which anomalies occur, these manifest themselves as 
significant excursions from the nominal velocity (and position). It will be seen that the GLRT for the 
hypothesis testing problem at hand can be easily traced back to the GLRT for Gaussian linear model [11], 
where the test statistics under the two hypotheses H0 and H1 are characterized, respectively, by a central and a 
non-central Chi-squared distributions, both with the same degrees of freedom. The performance is illustrated 
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in figure 2. 

 

Fig. 2. For the example in figure 1 a gap in AIS coverage has been simulated (left) and the 
resulting test statistic (right) shows clearly the anomaly. 

B. Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical 
Framework for Maritime Anomaly Detection 

The natural next question is whether a vessel can hide itself by issuing false AIS reports. The paper [5] 
assumes the vessel trajectory nominally follows a piecewise mean-reverting process; thereby, it addresses the 
problem of establishing whether a vessel is reporting adulterated position information through AIS messages 
in order to hide its current planned route and a possible deviation from the nominal route. Multiple 
hypothesis testing suggests a framework to enlist reliable information from monitoring systems (coastal 
radars and space-born satellite sensors) in support of detection of anomalies, spoofing, and stealth deviations. 
The proposed solution involves the derivation of anomaly detection rules based on the generalized likelihood 
ratio test and the model-order selection methodologies. The effectiveness of the proposed anomaly detection 
strategy is tested for different case studies within an operational scenario with simulated data. 

Optimal Opponent Stealth Trajectory Planning based on an Efficient Optimization 
Technique 

The previous subsection asks whether a vessel engaged in a course that it would prefer kept hidden can mask 
what it is doing by obfuscating the observations. The next step in the “game” of spotting/evading maritime 
anomalies, also playing the opponent’s side [1], is to describe the least-detectable trajectory that that the 
elusive vessel can take. The opponent’s route planning problem is formalized as a non-convex optimization 
problem capitalizing the Kullback-Leibler (KL) divergence between the statistical hypotheses of the nominal 
and the anomalous trajectories as key performance measure. The velocity of the vessel is modeled with an 
Ornstein-Uhlenbeck (OU) mean reverting stochastic process, and physical and practical requirements are 
accounted for by enforcing several constraints at the optimization design stage. To handle the resulting non-
convex optimization problem, we propose a globally-optimal and computationallyefficient technique, called 
the Non-Convex Optimized Stealth Trajectory (N-COST) algorithm. The NCOST algorithm consists of 
solving multiple convex problems, where the number was proportional to the number of segments of the 
piece-wise OU trajectory. The effectiveness of the approach proposed is demonstrated through case studies 
and a real-world example, see figure 3. The game can be extended to the detector specifically looking for the 
least-observable trajectory. 

The main contribution of [1] is twofold, specifically: i) a novel optimal path planning formulation to blind 
an anomaly detection procedure so as to execute covertly a given task (e.g., a rendezvous with 
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Fig. 3. Real-world AIS track (black dashed line) versus optimized trajectory (red circle markers 
line). (b): Performance of anomaly detector (10) shows the optimized trajectory being less 

detectable than the real one. 

another ship), and ii) an optimal and efficient solution for the aforementioned problem formulation, called 
Non-Convex Optimized Stealth Trajectory (N-COST). Without the (non-trivial) derivation of N-COST, 
the proposed optimization problem would not have been solvable. A brute force implementation procedure 
would not be feasible, since the optimization space would grow exponentially with the length of the 
velocity and position sequence for any given discretization step of the optimization variables. 

II. MARITIME TRAJECTORY LEARNING 

A. Multiple Ornstein-Uhlenbeck Processes for Maritime Traffic Graph Representation 
In [8] we propose an unsupervised procedure to automatically extract a graph-based model of commercial 
maritime traffic routes from historical Automatic Identification System (AIS) data. In the proposed 
representation, the main elements of maritime traffic patterns, such as maneuvering regions and sea-lanes, 
are represented, respectively, with graph vertices and edges. Vessel motion dynamics are defined by multiple 
Ornstein-Uhlenbeck processes with different long-run mean parameters, which in our approach can be 
estimated with a change detection procedure based on Page’s test, aimed to reveal the spatial points 
representative of velocity changes. A density-based clustering algorithm is then applied to aggregate the 
detected changes into groups of similar elements, and to reject outliers. To validate the proposed graphbased 
representation of the maritime traffic, two performance criteria are tested against a real-world trajectory 
dataset collected off the Iberian Coast and the English Channel. Results show the effectiveness of the 
proposed approach, which is suitable to be integrated at any level of a JDL system. 

A well-known fact about maritime traffic is that the majority of it is, unsurprisingly, very regular, as also 
shown on the left in figure 4, where a ship traffic density map is reported. Ships, especially those involved in 
goods transportation, often if not always seek to optimize fuel consumption, and therefore will naturally 
follow the most convenient path allowed by international regulations and traffic separation schemata. Thanks 
to this overall regular behavior, detections of abrupt changes in the long-run velocity parameter v are more 
likely expected in proximity of waypoint areas. Formalized via change detection theory [12] the procedure 
used aims to detect these changes and subsequently to estimate the time instants of change via a Page test. In 
order to discover significant waypoint areas, i.e., regions where vessels are more likely to show long-run 
mean velocity changes, the change detections need to be first aggregated in clusters. In this paper, we use the 
Density-Based Spatial Clustering of Applications With 
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Fig. 4. Left: Density map of AIS messages collected from cargo ships during two months in the 
area of interest. Several waypoints, i.e., localized spatial regions where vessels show velocity or 

orientation changes are observable. Linear piecewise lanes that make up standardized routes 
followed by vessels are clearly visible. The color is proportional to the number of ships whose 
reported positions fall within the ground footprint, from green (low traffic density) to red (high 
traffic density). Right: Two navigational legs off the coast of the Iberian peninsula and elliptic 

areas defined by three different values of eccentricity: 0.95, 0.97, 0.99. 

Noise (DBSCAN) algorithm [10]. An example is shown on the right of 4. The ellipses are used in the 
clustering procedure. 

 

Fig. 5. Example of the change detection procedure applied to a vessel’s track. On the left, the 
red circles are the points where a change is detected, while the red arrow represents the starting 
point and the vessel’s direction. On the right, the red dots represent the instantaneous values of 

the velocity along the x and y components and the track orientation while the circles detected 
changes of the parameters. The parameter δ of the change detection procedure is set to 5o and N 

= 15. 

B. Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural 
Networks 

Recent deep learning methods for vessel trajectory prediction are able to learn complex maritime patterns 
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from historical Automatic Identification System (AIS) data and accurately predict sequences of future vessel 
positions with a prediction horizon of several hours. However, in maritime surveillance applications, reliably 
quantifying the prediction uncertainty can be as important as obtaining high accuracy. The paper [7] extends 
deep learning frameworks for trajectory prediction tasks by exploring how recurrent encoder-decoder neural 
networks can be tasked not only to predict but also to yield a corresponding prediction uncertainty via 
Bayesian modeling of epistemic and aleatoric uncertainties. We compare the prediction performance of two 
different models based on labeled or unlabeled input data to highlight how uncertainty quantification and 
accuracy can be improved by using, if available, additional information on the intention of the ship (e.g., its 
planned destination). 

 

Fig. 6. Left: Complete dataset of AIS positions used in the experiments; the training and testing 
sets are subsets of the dataset showed here. Each dot in the image corresponds to a ship’s 

position. Contains data from the Danish Maritime Authority that is used in [7] in accordance with 
the conditions for the use of Danish public data [9]. Right: Vessel trajectory prediction with 

representation of the prediction uncertainty depicted as confidence ellipses (at different 
confidence levels), using [9]. 

The main contributions of [7] are: 1) A model for the aleatoric and epistemic uncertainty of trajectory 
predictions provided by encoder-decoder RNNs using Bayesian deep learning tools; 2) A novel 
regularization method for the decoding phase to prevent complex co-adaptations between the encoded data 
and the high-level information about the vessel’s intention; and 3) Experimental results on real-world AIS 
data showing the effectiveness of the proposed encoder-decoder architecture with uncertainty modeling in 
learning trajectory predictions with well-quantified uncertainty estimates using labeled and unlabeled data. 
Figure 6 shows an example of how the proposed model is able to predict future trajectories and prediction 
uncertainty given input sequences from past data. 

Uncertainty on the prediction estimates can be captured with recently developed Bayesian deep learning 
tools, which offer a practical framework for representing uncertainty in deep learning models. In the context 
of supervised learning, two forms of uncertainty, i.e., aleatoric and epistemic uncertainty are considered, 
where epistemic is the reducible and aleatoric the irreducible part of uncertainty. Aleatoric (or data) 
uncertainty captures noise inherent to the observations, whereas epistemic (or model) uncertainty accounts 
for uncertainty in the neural network model parameters. Epistemic uncertainty is a particular concern for 
neural networks given their many free parameters, and can be large for data that is significantly different 
from the training set. Thus, for any real-world application of neural network uncertainty 
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Fig. 7. Average Prediction Error (APE) (a) and predicted total variance (b). Both are computed at 
the hth prediction sample (i.e., prediction horizon 3 hours) and are expressed as a function of the 

vessel distance from a fixed point, located in the upper left corner of figure 6. Panel (b) shows 
the square root of the determinant of the covariance matrix produced by the network, which is 

also known as generalized variance and is proportional to the area of the prediction uncertainty 
ellipse. 

estimation, it is critical that it be taken into account. We follow a combined aleatoric-epistemic model to 
capture both aleatoric and epistemic uncertainty in our prediction model. We use an encoder-decoder 
architecture with attention mechanism composed of a BiLSTM encoder layer with 64 hidden units, and an 
LSTM decoder layer with 64 hidden units. For Bayesian modeling of the epistemic uncertainty, we used MC 
dropout with M = 100 samples, and dropout rate applied to recurrent connection p = 0.05 in both encoder 
and decoder layers. The model was trained by applying AdamW optimizer with a learning rate of 0.0001 and 
weight decay of 0.0001 to minimize the mean absolute error loss function, an earlystopping rule with 3000-
epoch patience, and a mini-batch size of 200 samples. Better performance in terms of prediction accuracy 
can be achieved by labeling the input data based on a high-level pattern information, such as the vessel’s 
intended destination. Figure 7 demonstrates both the effectiveness of our scheme to model uncertainty and 
also the impact of labeling (e.g., of destination) on training data. 

III. SPACE-BASED GLOBAL MARITIME SURVEILLANCE 

Maritime surveillance (MS) is of paramount importance for search and rescue operations, fishery 
monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since 
terrestrial radars and automatic identification system (AIS) are not always guaranteed to provide a 
comprehensive and seamless coverage of the entire maritime domain, the exploitation of space-based sensor 
technologies installed on satellites orbiting around the Earth, that complements existing terrestrial 
techniques, is crucial. These space-based technologies (see figure 8) include satellite AIS, synthetic aperture 
radars, multi-spectral and hyperspectral optical sensors, and global navigation satellite system reflectometry, 
and are reviewed in [2]. Furthermore, the development of future MS systems combining multiple terrestrial 
and space-based sensors with other information sources requires dedicated artificial intelligence and data 
fusion techniques for the processing of raw satellite images and fuse heterogeneous information. The 
objective of [3] is to provide an overview on the most promising artificial intelligence and data fusion 
techniques for MS using space-based sensors. 

A. Satellite Technologies 
Nowadays, space-based remote sensing data involves a range of technologies and modalities including 
satellite AIS (Sat-AIS) (see figure 9), synthetic aperture radar (SAR) (see figure 10), multi-spectral (MSP) 
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Fig. 8. The processing of images acquired by space-based sensors with state-of-the-art artificial 
intelligence and data fusion techniques to extract real-time information on the current maritime 

situation enables to detect and prevent piracy, human trafficking, and environmental threats 
such as oil spills. 

and hyper-spectral (HSP) optical sensors, Global Navigation Satellite System reflectometry (GNSS-R), and 
characteristics, e.g., resolutions, viewing angle, frequency, acquisition modes, polarization. Space-based 
sensors for Earth observation (EO) installed on artificial satellites allow collection of images of huge and 
remote areas of the globe within relatively short times, and hence highly important for MS improvement [2]. 
Recently, different initiatives from national and international space agencies have encouraged the 
exploitation of remote sensing technologies by providing end-users with freely available data. The joint 
NASA/USGS Landsat series and the joint EU/ESA Copernicus program with the Sentinel multisensor 
constellation for EO and monitoring, the NASA CYGNSS mission for the hurricane forecasts and ocean 
surface analysis using GNSS signals of opportunity, represent a partial list of space programs and missions 
providing satellite data at no cost. 

 

Fig. 9. Real-time AIS reports in the Mediterranean Sea, acquired by ground-based stations 
and satellites (image courtesy of MarineTraffic). 

Each of the technologies mentioned has advantages, but also some corresponding concerns. For example, 
GNSS-R offers a highly-promising way to harness GPS signals that are extant; but it is an unproven 
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Fig. 10. Left: Oil spill detection on a SAR image acquired by S-1 constellation in IW mode (10m 
resolution). Right: Vessels detected using a SAR image acquired by COSMO-SkyMed 

constellation in Stripmap HIMAGE mode (5m resolution). 

Technology Advantages Drawbacks 

Sat-AIS 

Accurate ship information 
Very high update rate (up to 2 seconds) Global 
coverage of AIS services 

Vulnerable (e.g. spoofing) 
Limited to ships with AIS 
Limited to cooperative ships 

 Compact, low-power, light-weight and cheap Limited to ship detection/tracking 

SAR All-weather, all-time sensing capabilities Very 
high spatial resolution (down to 1 m) 

Large size 
Imagery difficult to visually and manually interpret 

 Polarimetric diversity Affected by speckle noise 

MSP 
Imagery easy to interpret 
Very high spatial resolution (down to 0.3 m) 

Sensitive to cloud and sunlight conditions Limited 
revisit time 
Limited areas covered during each acquisition 

HSP Very high spectral resolution (down to 1 nm) 
Anti-camouflage capabilities 

Low spatial resolution 
Large computational burden 

 Suited to accurate classification Sensitive to cloud and sunlight conditions 

GNSS-R All-weather, all-time sensing capabilities 
Compact, low-power, light-weight and cheap 

Low spatial resolution Very 
low power density 

 Seamless global coverage Poor performance in standard configuration 

 100+ GNSS satellites available Predetermined waveform 

Fig. 11. Capabilities and disadvantages of the various satellite maritime surveillance 
technologies. 

technology, and the power budget is of concern. A table listing the strengths and weaknesses of each is in 
figure 11. 

B. Artificial Intelligence and Dats Fusion 
In [3] we describe the main artificial intelligence (AI) and imaging techniques for image segmentation, target 
detection and classification, and provide possible use cases with real images acquired by satellite sensors. 
We then proceed by describing the most recent Bayesian and statistical techniques to extract valuable 
knowledge from a huge amount of historical Sat-AIS data, such as most common maritime routes, and to 
track multiple targets by fusing information collected by multiple heterogeneous sensors. Among these, 
multitarget tracking (MTT) algorithms based on the sum-product algorithm (SPA) are gaining popularity 
thanks to their abilities to fuse information from different heterogeneous sources, to their scalability, i.e., low 
computational complexity at the increasing number of information sources, targets and measure-=ments, and 
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to their capability at including contextual information, e.g., maritime routes and ships class information 
extracted from satellite images. A use case that confirms the strength of SPA-based MTT algorithms when 
combined with information acquired by satellite sensors is also provided. 

 

Fig. 12. Left: Example result of the segmentation task on VHR images (first use case): detected 
ships are surrounded by bounding boxes and highlighted with different colors. Right: Stern and 

bow classification for detected ships in clipped satellite images acquired by S-2. 

The training of complex DNN architectures with multiple hidden layers and neurons for satellite image 
segmentation and target classification requires the avail- ability of large labelled datasets, which need to be 
pre- processed, in order to reduce unwanted bias in the data, and the availability of high computational 
power, such as graphical processing units (GPUs). Data augmentation techniques, e.g., cropping, padding, 
and flipping, enable practitioners to significantly increase the diversity of data images available to train large 
DNN models, without actually collecting new images. One use case consists of detecting ships and 
extracting their important features, e.g, position, width, length, heading and other relevant information, from 
very high resolution (VHR) optical satellite images by means of CNNs. The training dataset consists of 
about 200000 VHR images, with spatial resolution of approximately 1.5 m and of dimension 768 by 768 
pixels, acquired by GeoEye, SPOT, Pleiades and Black Sky satellites; the inference, i.e., the testing of the 
CNN, is performed on new images acquired by these sensors. A Mask R-CNN architecture is used, and the 
left panel in figure 12 shows an example result of the segmentation task: detected ships are surrounded by 
bounding boxes and highlighted with different colors. Another use case is related instead to the classification 
between stern and bow of ships by means of a ResNet34 architecture. The training dataset is composed of 
satellite images acquired by Sentinel-2 (S-2); detected ships are clipped, manually divided into stern and 
bow, and labelled accordingly. The right panel in figure 12 represents the results of the classification. 

The increasing availability of space-based remote sensors providing continuous coverage on remote areas of 
the Earth requires the development of sophisticated information fusion and MTT algorithms, which are able 
to combine and fuse information from different heterogeneous sources, e.g., terrestrial radars, Sat-AIS, SAR 
and optical sensors. One use case is therefore to fuse SAR measurements and AIS messages in order to track 
potential targets and also identify them by exploiting the MMSI identifiers. The SAR measurements and AIS 
messages used by the SPA-based MTT method are represented in the left panel of figure 13 by the red 
crosses and green triangles, respectively. The red dashed rectangle delimits a geographical area of little 
interest from a tracking point of view with a large number of docked 
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Fig. 13. Left: SAR (red crosses) and AIS (green triangles) measurements used by the SPA-based 
fusion algorithm obtained in the period from 8 September 2018 at 16:30 till 12 September 2018 at 

16:47. The measurements inside the red dashed rectangle have not been considered. Right: 
Estimated and real trajectories for the vehicles carrier Gaia Leader (MMSI 371158000) obtained 

using the SAR and AIS measurements. 

ships. Therefore, the SAR measurements and AIS messages from ships within this red dashed rectangle are 
discarded. The dynamic model used to describe ship motion in the SPA-based MTT algorithm is the OU 
model. Estimated positions of detected targets are calculated each time a SAR measurement is obtained, 
using all AIS messages gathered in the time interval between the current and the previous SAR 
measurements. Besides estimating the number of targets and their positions, the algorithm associates, when 
possible, an MMSI identifier to each of them. These MMSI identifiers are selected from a set consisting of 
all the MMSI identifiers so far observed. The right panel of figure 13 shows the output of the SPA-based 
MTT algorithm. One can see that in the considered time period only a single target is detected. In particular, 
the red and blue lines show the true and estimated trajectories of the vehicle carriers GAIA LEADER (see 
figure 14). 

 

Fig. 14. The vehicles carrier GAIA LEADER (MMSI: 371158000). (Image courtesy of 
MarineTraffic.com). 
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